About 390 results
Open links in new tab
  1. Structured vs. unstructured data: What's the difference? - IBM

    A look into structured and unstructured data, their key differences, definitions, use cases and more.

  2. What is unstructured data? - IBM

    Unlike structured data (which has a predefined data model) unstructured data does not easily conform to the fixed schemas of conventional databases. Instead, unstructured data is often …

  3. Strukturierte vs. unstrukturierte Daten: Was ist der Unterschied?

    Zugänglich und einfach zu verwenden: Zum Verständnis strukturierter Daten sind keine fundierten Data-Science-Kenntnisse erforderlich. Aufgrund des Standardformats und des hohen …

  4. AI and the future of unstructured data - IBM

    But just like with structured data, unstructured data has to be governed—classified, assessed for quality, filtered for PII and objectionable content, and deduplicated—so successful strategies …

  5. Datos estructurados vs. datos no estructurados: ¿Cuál es la ... - IBM

    Los datos no estructurados a menudo se almacenan en su formato nativo en bases de datos no relacionales o data lakes. Casos de uso: las organizaciones pueden emplear datos …

  6. 構造化データと非構造化データの違い| IBM

    構造化データは通常、Excelスプレッドシートや リレーショナル・データベース (またはSQLデータベース)などの表形式で保存されます。ユーザーは、 構造化照会言語 (SQL)を使用 …

  7. Conquering the 3 core challenges of unstructured data - IBM

    On the structured side, data engineering is a well-organized discipline, but on the unstructured side, it hasn't really taken off because there's a tremendous amount of data.

  8. What is data? - IBM

    Qualitative data can be structured (such as coded survey responses) or unstructured (such as free-text responses or interview transcripts). Common use cases for qualitative data include …

  9. 结构化数据与非结构化数据:有什么区别?| IBM

    结构化数据通常以表格格式存储,例如 Excel 电子表格和 关系数据库 (或 SQL 数据库)。用户可以使用 结构化查询语言 (SQL) 在关系数据库管理系统 (RDBMS) 中有效地输入、搜索和操作 …

  10. Agentic AI has an unstructured data problem: IBM is unveiling a …

    IBM's new capabilities will enable organizations to ingest, govern and retrieve unstructured (and structured) data—and from there, scale accurate, performant generative AI.